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Abstract

In recent years, Graphplan style reachability analysis and
mutual exclusion reasoning have been used in many high

performance planning systems. While numerous refinements

and extensions have been developed, the basic plan graph
structure and reasoning mechanisms used in these systems

are tied to the very simple STRIPS model of action.

In 1999, Smith and Weld generalized the Graphplan
methods for reachability and mutex reasoning to allow

actions to have differing durations. However, the
representation of actions still has some severe limitations

that prevent the use Of these techniques for many real-world
planning systems.

In this paper, we 1) separate the logic of teachability from
the particular representation and inference methods used in

Graphplan, and 2) extend the notions of teachability and

mutual exclusion to more general notions of time and action.
As it turns out, the general rules for mutual exclusion

reasoning take on a remarkably clean and simple form.

However, practical instantiations of them turn out to be

messy, and require that we make representation and
reasoning choices.

Introduction

In 1995, Blum and Furst introduced a method for reachabil-

ity analysis in planning [2, 3J. The method involves incre-

mental construction of a plan graph to provide information

about which propositions and actions are possible at each

time step. Since then, plan graph analysis has been a key part

of several high performance planning systems such as IPP

[18], STAN [19], and Blackbox [16]. More recently, reach-

ability analysis has been used for another purpose - to help

compute more accurate heuristic distance estimates for

guiding state-space search [4, 11, 24, 22] and guiding search

in partial-order planners [23].

Reachability analysis and mutual exclusion reasoning

have also been the subject of both efficiency improvements

[19, 6], and extensions to deal with things like limited forms

of uncertainty [26, 28], and resources [17]. Unfortunately,

the basic plan graph structure and reasoning mechanisms are

limited to the very simple STRIPS model of action. In
STRIPS, one cannot talk about time - actions are considered

to be instantaneous, or at least of unit duration, precondi-

tions must hold at the beginning actions, and effects are true

in the subsequent state. Many real world planning problems

require a much richer notion of time and action; actions can

have differing durations, preconditions may need to hold

over some or all of the actions, effects may take place at dif-

fering times, and exogenous events or conditions may occur.

In 1999, Smith and Weld [27] generalized the Graphplan

methods for reachability and mutex reasoning to allow ac-

tions to have differing durations. However, the representa-

tion of actions used by Smith and Weld still made a number

of simplifying assumptions:

1. All effects take place at the end of an action.

2. Preconditions that are unaffected by an action hold

throughout the duration of the action.

3. Preconditions that are affected by an action are unde-

fined throughout the duration of the action.

4. There are no exogenous events.

Unfortunately, these restrictions are not reasonable for many

real-world domains [14, 25]. Many actions have resource

consumption effects that occur at the beginning of the ac-

tion. Others have effects that are transient. In addition, some

action preconditions need only hold at the beginning of an

action, or for a limited period. As an example that illustrates

all of these, turning a spacecraft involves firing thrusters for

periods at the beginning and end of the turn. As a result,

there are transient needs for various resources (valves, con-

trollers), transient effects like vibration and heat that occur

near the beginning and end, and outright resource consump-

tion (fuel) that occurs near the beginning, and near the end.

Finally, exogenous events are crucial in many domains.

For example, in planning astronomical observations, celes-
tial objects are only above the horizon during certain time

windows, and they must not be occluded by other bright ob-

jects.

While Smith and Weld's Temporal Graphplan (TGP)

planner performs extremely welll, the representation cannot

be easily extended to remove the above restrictions. In par-

ticular, when exogenous events and/or transient effects are

permitted, reachability and mutual exclusion relationships

hold over intervals of time. For example, the action of ob-

serving a particular celestial object is only reachable during

the intervals when the object is visible. A second problem

I. Do [8] and Haslum [i0] have reported that TGP continues to

outperform more recent domain-independent temporal planners.



with TGP is that the mutex rules are complex, and it has been
difficult to verify that they are sound.

In this paper we extend the notions of reachability and
mutual exclusion reasoning to deal with the deficiencies in
TGP, namely: 1) actions with general conditions and effects,
and 2) exogenous conditions. Note that our objective here is
not to develop a planning system that does this reasoning,
but rather to lay down a formal set of rules for doing this rea-
soning. Given such a set of rules, there are choices concern-
ing how much reachability reasoning one actually wants to
do, which in turn leads to different possibilities data struc-
tures, implementations, and search strategies.

In the next section we introduce notation for time and ac-

tions. Using this notation, we then develop the laws for sim-
ple reachability without mutual exclusion. We then develop
a very general but simple set of laws for mutual exclusion
reasoning. Finally, we discuss practical issues of implement-
ing these laws. In particular, we discuss some possible re-
strictions that one might want to impose on mutex reasoning
and discuss how these laws can be implemented using a con-
straint network and generalized arc-consistency techniques.

The Basics

Propositions, Time and Intervals

To model many real world planning domains, we need to
talk about propositions (f/uents) holding at particular points
in time, and over intervals of time. We will use the notation
p;t to indicate that fluent p holds at time t. We will use the
notation p;i to indicate that p holds over the interval i.Thus:

p;i¢_ V(te i)p;t

We use the standard notation [t 1, t2] , (tl, t2) , (tl,t2l,

[tl, t2) to refer to closed, open, and partially open intervals
respectively, and use i+ and i- to refer to the left and right
endpoints of an interval. For our purposes, we do not need a
full set of interval relations, such as those defined by Allen
[1]. However, we do need the simple relation meet. Two in-
tervals meet if the right endpoint of the first is equal to the
left endpoint of the second, and the common endpoint is
Contained in at least one of the two intervals (they can't be
both open): 2

Meets(i, j) ¢_, i+j - ^ i+e i_j

Finally, we use i IIj to refer to the concatenation of two in-
tervals that meet.

Actions

In many real world domains, actions take time. In order for
an action to be successful, certain conditions may need to
hold over part or all of the action. Furthermore, different ef-
fects of the action may not all occur at the same time. In fact
some of these effects may be transient - that is, they are only
temporarily true during the action. For example, an action

2. We permit the endpoint to be in both intervals. TechnicaJly this
would be considered overlap by Allen [1].

may use a resource (such as a piece of equipment) but re-
lease it at the end. In this case the resource becomes unavail-

able during the action, but becomes available again at the
end of the action. To capture all of this, we model actions as
having a condition and an effect, both of which are a con-
junction of literals. 3 Thus, an action is represented as:

a;f cond: Pl;il ^ " /_ On;in

eft: el ;Jl ^ " ^ en;Jn

Where we require that:

1. the conjunction of the condition and effect is logically
consistent

2. each effect must start at or after time t, that is:

ik 'Jk _>t

3. each of the intervals ik , Jk is relative to the start time
t, that is ik, Jk = t + _, where the interval A is not a func-
tion of t.

A simple STRIPS action with preconditions Pl ..... Po and
effects e 1.... , en would be modelled as:

a;t cond: pl;tA...APn;t

eft: el;t+l^...^en;t+l

As a more complex example, consider an action that requires
that p hold throughout the action, and requires a resource r
for two time units before releasing r and producing its final
effect e. This would be modelled as:

a;t cond: p;[t, t + 2] ^ r;t

eft: _r;( t, t + 2) ^ r;t + 2 ^ e;t + 2

So what exactly are the semantics of these more general
actions? In STRIPS, an action can only be performed if its
preconditions hold. In that case, the effects will hold at the
next time point or state. However, this does not make sense
for our more general notion of action, because the condition
might specify that a proposition hold at some time after the
start of the action. In other words, there is nothing to prevent
us from initiating such an action even though part of the con-
dition is not valid. As a result, the semantics we ascribe to
actions is that if action a;t is performed at time tand all of the
conditions hold over the designated time intervals, then the
effects will hold over the designated time intervals. If the
conditions do not hold, then the outcome of the action is un-
known.

Note that there is a subtle difference between the effects:
e;[t, t" ) ^ _e;t', e;[t, t" ), and e;t ^-_e;t'. The first specifies

that e holds over the designated interval, and ceases to hold
after that. The second says that e holds over the specified in-
terval but may persist after that if nothing else interferes. The

3. Disjunctions in the condition can be handled by breaking the

action into simpler actions with only conjunctive conditions. We

could also allow any number of condition/effect pairs, as is done

with conditional effects in the PDDL language. However, for our

purposes it is more convenient to have different names for each

condition/effect pair. As a result, we will suppose that an action

with multiple condition�action pairs is broken up into separate

actions having disjoint conditions,
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last specifies e at tand rbut leaves the status of e at interme-

diate times subject to persistence or interference by other ac-

tions. All three of these turn out to be useful, but the first is

generally the most common.

For convenience we will use Cond(a;t) and Eff(a;t) to refer

to the condition and effect for action a;trespectively. It is not

particularly important how we define the duration of an ac-

tion, but in keeping with the usual intuitions, we will define

it as being the difference between the end of the last effect,

and the start of the action. Thus:

D(a;t) =- max j+ t
{j: Eff(a;t) _ e;j}

Exogenous Conditions

In order to model more realistic planning problems, we need
to model exogenous conditions. By an exogenous condition,

we mean any condition dictated by actions or events not un-

der the planner's control. For a STRIPS planning problem,
the initial conditions are the only type of exogenous condi-

tions permitted. More generally, exogenous conditions can
include such things as the intervals during which certain ce-

lestial objects are visible, or the times at which resources be-

come available. We can consider exogenous conditions as

being the effects of unconditional exogenous actions. For

convenience, we will lump all exogenous conditions togeth-

er, and consider them as being the effects of a single uncon-

ditional action, X:

X;O cond:

eft: xc_ ;il ^ -'" ^ XCn;in

where for initial conditions, the interval would be the time

point 0. Thus, for a telescope observation problem, we might

have something like:

X;O cond:

eft: Telescope-parked ;0

^ Sunset ;0023

^ Visible(C842);[0217, 0330l

A...

For purposes of this paper, we have chosen to consider only

unconditional exogenous events. More generally, we might

want to consider conditional exogenous events - i.e., events

that occur only if the specified conditions are met. As it turns

out, this extension requires a few additional axioms, but is

otherwise not particularly difficult. We wilt elaborate on this
later.

Simple Reachability

We first consider a very simple notion of reachability; we re-

gard a proposition as being reachable at time t if there is

some action that can achieve it at time t, and each of the con-

ditions for the action is reachable at/over the specified time

or interval. This is a very optimistic notion of teachability

because even though two conditions for an action might be

possible, they might be mutually exclusive, and we are not

yet considering this interaction. To formalize teachability,

we will use two modal operators, _(p;t), and A(p;t). 0(p;t),

means that p;t is logically possible - that is, p;t is consistent

with the exogenous conditions, zx(p;t) means that p;t is opti-

mistically achievable or reachable - that is, there is some

plan that could (optimistically) achieve p;t. According to

these definitions, if p;t is reachable, it is possible. However

the converse is not true- p;t can be logically possible, but not

reachable, because the set of actions is not sufficiently rich

to achieve p;t.

For convenience, we will allow _ and z_ to apply to in-

tervals as well as single time points:

O(p;i) ---V(t _ i)O(p;t)

A(p;i)--- V(t_ i) A(p;t)

In general, modal logics tend to have nasty computational

properties, but the logic we will develop here is particularly

simple - we do not require any nesting of these modal oper-

ators, and we will not be allowing any quantification inside

of a modal operator.

Exogenous Conditions

The first set of axioms we need are the exogenous condi-

tions. Thus:

(Eft(X;0) _-p;t) _-p;t (1)

Of course, the exogenous conditions are also both possible
and reachable:

p;i _ 0(p;i) (2)

p;i _ A(p;i) (3)

Likewise, the negation of any exogenous condition cannot

be either possible or reachable:

p;i _ --.0(-_p;i) (4)

p;i _ -,A(_p;i) (5)

Finally, we need to be able to apply the closed world as-

sumption to the exogenous conditions, inferring that any-

thing that is not explicitly prohibited by the initial conditions

is possible:

(Eft(X;0) _p;t) [- 0(p;t) (6)

Persistence

Next, we need a frame axiom for reachability - that is, an ax-
iom that allows us to infer that if a proposition is reachable

at a given time then it is reachable later on, just by allowing

it to persist. However, we need to make sure that the propo-

sition isn't forced to become false by an exogenous condi-

tion. To do this, we require that the proposition also be

possible. A first version of this axiom is:

A(p;i) ^ meets(i, j) ^ 0(p;j) _ A(p;i II j) (7)

Here, the intervals i and j can be either open or closed - all

we require is that they meet. Most commonly, i will be a sin-

gle time point t, and i an open interval (t,t), where t'is either

o_, or the next time point at which the proposition p becomes

false because of exogenous conditions.

Unfortunately, this axiom is a bit too optimistic - it al-

lows us to persist transient effects of an action indefinitely
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into the future. Normally this is ok, but if an exogenous con-
dition blocks a condition for that action at some time in the

future, then the transient effect should not persist indefinite-
ly. For example, suppose that we have a single action a;t hav-
ing condition p;t, and requiring a resource r for two time units
before releasing rand producing its final effect e. This would
be modelled as:

a;t con(f: p;t ^ r;t

eft: -_r;(t,t+2)^r;t+2Ae;t+2

Now suppose that the conditions p and r are initially true,
but p becomes false at time 3. As a result, a is only reachable
up until time 3. The effect e is first reachable at time 2, but
can persist indefinitely. However, -r can only occur during
the action, and should therefore only be reachable in the in-
terval (0,5). However, Axiom (7) would allow us to persist
the reachability of -_r indefinitely into the future.

The way we fix this problem is to specialize axiom (7) to
only allow action effects to persist if they are not later over-
ridden by the action. Formally, we define p;i to be a persis-
tent effect for an action if there is no other effect ,p;j such
that i ends after i:4

f

PersistEff(a;t) = tp;ie Eff(a;t):(_g]: j+>i+
A

(p;je Eff(a;t)v-,p;je Eff(a;t)))}

Using this definition, we can restrict axiom (7) by requiting
that p;t be a persistent effect:

_a, t : p;i • PersistEff(a;t) (8)

^ A(p;i) ^ meets(i, j) ^ O(p;j) _ h(p; i II j)

This allows us to persist the reachability of persistent effects,
but not transient ones.

Actions

Finally, we need axioms that govern when actions are reach-
able, and what their effects will be. An action is reachable if
its conditions are reachable and the effects are not prevented:

ACond(a;0 ^ 0(Eft(a;/)) _ A(a;i) (9)

Conversely, if an action is reachable, both its conditions and
its effects must be reachable:

a;t_ Cond(a;t) ^ Eff(a;t)

A(a;i) ^ (a;t _ p;t') _ A(p;t') (10)

Conjunctive Optimism

Although Axiom (9) is technically correct, it is difficult to
satisfy. The trouble is the premise _Cond(a;t). Typically, the
condition for an action will be a conjunction of propositions,
so we need to be able to prove that this conjunction is reach-
able in order to be able to use the axiom. Unfortunately; we
cannot usually do this, because our axioms only allow us to

4. Since the effects of an action must be consistent, the intervals i
and j will actually be disjoint.

infer that individual effects are possible, (or at best, conjunc-
tions of effects resulting from the same action). Deciding
whether a conjunction of propositions is reachable is a plan-
ning problem, so there is little hope that we can do it effi-
ciently. Instead, we will be extremely optimistic, and
suppose that if the individual propositions are reachable,
then the conjunction is reachable:

A(P 1;i 1) ^ ... ^ A(Pn;i n)

A(p t ;i 1 ^ ... ^ fin;in) (1 1)

In the next section we will revise this axiom to require that
the propositions are not mutually exclusive.

An Example

To see how the axioms for simple reachability work, we re-
mm to our example with a single action a;t having condition
O;t, and requiring a resource r for two time units before re-
leasing rand producing its final effect e:

a;t cond: p;t ^ r;t

eft: -_r;( t, t + 2) ^ r;t + 2 ^ e;t + 2

We suppose that the conditions p and r are initially true, but
p becomes false at time 3. We therefore have the exogenous
conditions:

)CO cond:

eft: p;0 ^ r;0 ^ _p;3

Using the axioms developed above, we can now derive
reachability for the propositions p, r, % e, and the action a:

1. p,O, r;0, _p;3 X;O, (1)

2. _,(p;O), A(r;0) 1, (3)

3. 0(p;(0,3)), (>(r;(0,=)) 1, (6-CWA)

4. ,yp;[0, 3 )), zx(r;[0,= )) 2, 3, (8-Persist.)

5. A(a;[0, 3 )) 4, (9)

6. Ae;[2, 5 ),A(_r;(0, 5)) 5, (10)

7. 0(0;[5, _ )) I, (6-CWA)

8. Zx(e;[2,o0)) 6, 7, (8-Persist.)

In this proof the numbers at right refer to the previous lines
of the proof, and the axioms that justify the step. A graphical
depiction of the final teachability intervals is shown in Fig-
ure 1.

[ P )

[ a )
[ c )

[ o )

( -,r )

I f t I I I |

0 1 2 3 4 5

Figure 1: Reachability intervals for a simple example.

Thus, we can see that because the action a is only possible
up until time 3, _r only persists up until time 5, but e can
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persist indefinitely. Of course, if there were an exogenous ef-

fect that forced e to be false at some time in the future, then

the persistence of e would also be curtailed by axiom (3). If

p later became true again, we would be able to apply action

a again, so the action a, and propositions e and -r could be-

come reachable during additional intervals

The style of reasoning that we have done here closely

mimics what goes on in Graphplan - we started at time 0,

and worked forward in time, adding new actions and propo-

sitions as they became reachable. However, we are not lim-

ited to a strict temporal progression - we can draw

conclusions in any order, as long as they are sanctioned by
the axioms.

Mutual Exclusion

Much of the power of Graphplan comes from the use of bi-
nary mutual exclusion reasoning, which rules out many

combinations of incompatible actions and propositions.
From the point of view of our logic, proving that two or more

actions or propositions are mutually exclusive amounts to

proving that the conjunction is not possible and therefore not

reachable. We will use an n-ary modal operator

M(P 1;t 1, ..., Pn;tn)

to indicate that the propositions Pl ;tl ..... pn;tn are mutually

exclusive. We note that the arguments to g are commutative
and associative. As before we will extend the notation to

work on intervals:

M(Pl ;il, '"' Pn;i n)

_V(t 1 _ i 1, ..., tnE in ) M(Pl;t 1, ..-,Pn;tn)

Using mutual exclusion, we revise the conjunctive opti-

mism axiom (11) to be:

(A(Pl ;il)/" "'"/" A(P n;i n)) A -_M(p 1 ;il ..... Pn;i n)

A(p 1 ;i 1 ^ ... ^Pn;in) (12)

Our job then, is to write a set of axioms that allows us to infer

when propositions are mutually exclusive. This will restrict

what we can infer with axiom (12), and hence restrict our

ability to infer when actions are reachable using axiom (9).

As in Graphplan, our mutual exclusion laws will be incom-

plete - we are looking for a set of laws that are computation-

ally effective so that the reasoning can be done in

polynomial time. As a result, we will restrict our attention to

binary mutual exclusion, noting that if any set of proposi-

tions is mutually exclusive, then any superset is mutually ex-
clusive:

M(s) ^ sc s" _ M(S')

As in the work on Temporal Graphplan [27], the fact that

we are dealing with a much more general notion of time

means that actions and propositions can overlap in arbitrary

ways. As a result, it helps to define mutual exclusion be-

tween actions and propositions, as well as between pairs of

actions and pairs of propositions. In addition, because of ex-

ogenous events, and transient action effects, mutual exclu-

sion relationships can come and go repeatedly. 5 As it tunas

out, the general rules for mutual exclusion reasoning take on

a remarkably clean and simple form. However, practical in-

stantiations of them turn out to be more complex.

Logical mutex

If two propositions are logically inconsistent then it is clear-
ly impossible for them to be true at the same time. Formally:

(W1_-_W2 ) _ M(W1,W2 ) (13)

where wl and w2 can be either propositions p;t, or actions
a;t. This rule is the seed that allows us to infer a number of

simple logical mutex relationships. For example, if _t -=p;t

and w2 ==-_p;t we get the obvious mutex rule:

M(p;t, _p;t)

which forms the basis for Graphplan mutual exclusion rea-

soning. Similarly, if w 1 ==-p;t, and We -=a;f, and a;t'has a pre-
condition or effect -,p;t, then the action and proposition are

mutex (since (a;t" = _p;t) ):

(a;t'_-_p;t) _ M(p;t, a;t')

Going a step further, if we have two actions with logically

inconsistent preconditions or effects this rule allows us to

conclude that the actions are mutex:

(al;tl_P;t)^(a2;t2_-_p;t) _ M(al;tl, a2;t2)

Although we will not illustrate it here, rule (13) also admits
the possibility of inferring additional logical mutex from do-

main axioms that might be available (e.g. an object cannot

be in two places at once). It can also be used to derive logical

mutex between actions that have more general resource con-

flicts.

All of these logical mutex relationships are the seeds that

serve to drive the remainder of the mutex reasoning. As we

will see below, they allow us to infer additional mutex rela-

tionships between actions and propositions, pairs of actions,

and ultimately pairs of propositions.

Implication Mutex

Our second mutex rule is also remarkably simple, but more

subtle. If two propositions Vl and V2 are mutex, and some

other proposition v3 implies vl, then v3 is mutex with W1 -

Formally:

M(W1, W2) ^ (t.F3_ W1) _ M(_3, tlJ2) (14)

Again, the _gi can be either propositions or actions. Suppose

that W1 and Vz are mutex propositions, and Wa is an action

that has w 1 as a precondition. Since the action implies its

preconditions, this rule allows us to infer that the action is

mutex with Vz. Going one step further, if W2 is an action,

then this rule allows us to conclude that the actions w3 and

We are mutex. Thus, this single rule allows us to move from

proposition/proposition mutex to proposition/action mutex,
to action/action mutex.

5. In Graphplan and even TGP, once a mutex relationship disap-

pears, it cannot reappear at a later time.
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To see how this works, consider two simple STRIPS actions:
a, having precondition p and effect o, and b, having precon-
dition q and effect f. Suppose that both p and q are reachable
at time 1, but that they are mutex as depicted graphical]3' in
Figure 2. We can therefore apply the above rule to conclude

Figure 2:
time 1.

p;1 a;1 e;2

(
q;1 _ b;1 _ f;2

A simple STRIPS example with p and q mutex at

that a;l is mutex with q;1 and b;l is mutex with p;l. Having
done this, we can apply the rule again to conclude that a;l is
mutex with b;1 as shown in Figure 3.

p;1 _ a;1 _ e;2

q;1 b;1 f;2

Figure 3: Mutex derived by the implication rule

While axiom (14) works fine for a discrete STRIPS mod-
el of time, more generally, we do not want to do the mutex
reasoning for each individual time point. Instead, we would
like to do it for large intervals of time. So suppose we start
out with two propositions/actions _% and ,,o2 being mutex
over the intervals i1 and i2 , and _03;t 3 _ q_l ;tl • Then to find
the time interval over which _P3will be mutex with _2;i2, we
need to gather up all the times t3 that imply % at some
point in i1 . Formally:

M(el;i,,cP2;i2) ^ i3={t:q_3,t_9(tl_il):fl_l;tll

M(q0;i3, _P2;i2) (15)

To illustrate how this works, we extend our example to
continuous time, and imagine that p and q are produced by
mutually exclusive actions of different duration. In particu-
lar, suppose that p over [1,3) is mutually exclusive with q
over [2,3). Using (15) we could conclude that:

M(a;[1, 3 ), q;[2, 3 ))

M(b;[2, 3 ), p;[1, 3 ))

M(a;[1, 3 ), b;[2, 3 ))

as illustrated in Figure 4.

p;[1,3) _ a;[1,3) e

q;[2,3) b;[2,3)

Figure 4: Implication mutex for intervals

Explanatory Mutex

Our final rule is somewhat subtle and tricky - it is, in effect,
the explanatory version of the previous rule. Basically, it

says that if all ways of proving _I are mutex with kl/2then _l
and gt 2 are mutex:

The tricky part is the phrase "all ways of proving". For our
purposes, we are interested in the case where gl is a propo-
sition p;t and _3 is a way of achieving p;t. We could achieve
p;tby performing an action a;rthat has p;tas an effect, but we
could also potentially perform the action a at some earlier
time and allow o to persist. Thus, we need to account for all
of these possibilities. Furthermore, if p is achieved earlier
and allowed to persist, that "means of achieving" could be
mutex with tg2 for one of two reasons: either a;r is mutex
with _2, or the persistence of p is mutex with _2.

To formalize this, we define the support of a proposition
as being the union of the direct support and the indirect sup-
port for the proposition:

Supp(p;t) = DirSupp(p;t) _ IndSupp(p;t)

The direct support is simply the set of actions that can direct-
ly achieve the proposition:

= fa;t" : A(a;t')^ (Eff(a;f) _ p;t)}DirSupp(p;t)
k

The indirect support is a set of miniature plans for achieving
the proposition, each consisting of an action a;t'that achieves
the proposition before t, and the persistence of the proposi-
tion until t. As with persistence axiom (8), we need to be
careful not to rely on the persistence of transient effects:

IndSupp(p;t) = {a;t'/_ p;(f', t ] :

A(a;t') ^ t" < t ^ (PersistEff(a:f) _ p;r') ^ 0(p;(t", t ])}

Using this concept of support, we can restate our more spe-
cific version of (16) as:

For the case of direct support, _ is just an action a;t, so we
can directly evaluate M(e, _g). However, for indirect effects,

is a conjunction of an action a;t and a persistence p;i. If ei-
ther of these is mutex with _, then the conjunction is mutex
with g. More generally:

M(erl, g) vM(o2,_g) _ M(o 1 ^_2, W)

As a result, we expand axiom (17) into the more useful form:

(Vc_e DirSupp(p;t): M(_, _))

_,(V(ct ,,, n) e IndSupp(p;t): M(ct, _)v M(_x, _g))

M(p;t,_t) s (18)

To illustrate how this axiom works, we return to the sim-
ple example in Figure 3. From implication mutex we akeady
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knowthata;¢andb;¢ are mutex. Effect e;ghas only the direct
support a;1. As a result, we can use the above rule to con-
clude that b;1 is mutex with e;2. Similarly, we can conclude
that a;1 is mutex with he. Finally, using these facts we can
conclude that e;2 is mutex with f;e as shown in Figure 5.

p;1 a;1 _ 0;2

q;1 _ b;1 f;2

Figure 5: Mutex derived by the implication rule

As with Implication Mutex, we would like to be able to
apply (17) and (18) to intervals rather than just single time
points. If we generalize the notion of support to intervals, we
can state the more general version as:

As we did with (17) we could expand out to the longer but
more useful form containing direct and indirect support.

Practical Matters

Limiting mutex reasoning

Although the above mutex theory is very general, it can pro-
duce huge numbers of mutex conclusions, many of which
would not be very useful. In order to make the reasoning
practical, we need to constrain the application of these axi-
oms so that only the most useful mutex relationships are de-
rived.

The first, and most obvious way of limiting the mutex
rules is to only apply them to propositions and actions that
are actually reachable. If something isn't reachable at a giv-
en time, it is mutex with everything else, so there is no point
in trying to derive additional mutex relationships.

While this certainly helps, it is not enough. The trouble is
that our laws allow us to conclude mutual exclusion relation-

ships for propositions and actions at wildly different times.
For example, we might be able to conclude that 0;2 is mutu-
ally exclusive with q;238. While this fact could conceivably
be useful, it is extremely unlikely. To understand why, and
what to do about it, we need to consider how mutex are used.

Fundamentally, we use mutex to decide whether or not
the conditions for actions are reachable, and hence whether
the actions themselves are reachable (axioms (12) and (9)).
Thus, the mutex relations that ultimately matter are the prop-
osition/proposition mutex between conditions for an action.
With simple STRIPS actions, this means we are concerned
with propositions being mutex at exactly the same time. Un-
fortunately, with more general conditions we can't do this -

6. In practice, if _ is mutex with p;t. then we do not need to check
actions that support p prior to t (since the persistence of p will be
mutex with _). Thus we only need to consider support for p at
times t after p is mutex with _. This involves moving the check for
persistence mutex back into the definition of independent support.

an action may require p;t, and q;t+l. Thus, we'd need to "know
whether g(p:t, O;t+ 1) in order to decide whether the action
was reachable. However, we do not care about

M(p;t, q;t + 5) . Suppose we define the separation for a pair
of conditions in an action as the distance between the inter-

vals over which the conditions are required to hold. For our
example above, the condition separation was 1. We then take
the maximum over all conditions for an action, and the max-

imum over all actions. This tells us the maximum range of
times that we ultimately care about for proposition/proposi-
tion mutex relationships. In the extreme case where all pre-
conditions of actions are required at the start of the action,
we only need to consider whether propositions are mutex at
the same time.

We can draw similar conclusions concerning action/ac-
tion and action/proposition mutex, although in the latter
case, the ranges are somewhat wider. This is because we are
considering actions that support propositions, which means
the actions start before their effects. Still, limiting the appli-
cation of the axioms to such time ranges drastically reduces
the number of mutex conclusions, but with the potential
price of missing a few useful mutex relationships. For tem-
poral planning, this tradeoff needs to be carefully investigat-
ed.

Constraint-based reachability reasoning

We now turn our attention to the issue of finding an effective
way to calculate reachability information. For this, we turn
to constraint reasoning, which is an effective foundation for
reasoning about temporal planning problems. The con-
straint-based reachability reasoning tracks variables that de-
scribe teachability, and enforces constraints that eliminate
times where actions or propositions are not reachable.

The approach is motivated by the interval representation
used for temporal reasoning in various planning systems. In
simple temporal network propagation [7], event time do-
mains are described as intervals, and the algorithm is used to
infer distance relations between events in plans.

The basic idea appears similar to temporal networks; for
each action and proposition, we have a variable representing
when it is reachable, and constraints that relate action and
proposition reachability. However, this reachability problem
does not map to a classical temporal constraint satisfaction
problem. This is because action reachability requires neces-
sary conditions to extend over periods of time, so there is no
notion of a satisfying assignment to those variables. We
therefore turn to a more general class of constraint reasoning
problems, where the variables are linked by elimination pro-
cedures [12], that specify when intervals can be eliminated
from the domains. The result is a network where reachability
can be determined effectively by constraint propagation, but
there is no notion of a solution to the network. Different con-

straint propagation methods, such as generalized arc consis-
tency, can be applied to propagate the procedural
cons_aints. A very simple propagation method is to apply
the set of elimination procedures to quiescence.
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Let Tbe the set of possible times, which may be continu-

ous and infinite. Typically, Twill be a sub-interval of the in-

tegers or the real numbers. For each action, we define a

variable a, and for each proposition, we define a variable p.

The initial domain of each variable is r, and the intended se-

mantics are that the variables represent the times at which an

action or proposition is reachable.

The simplest reachability procedure enforces that if a flu-

ent is not possible, it is not reachable. This gives rise to the

following intervals being eliminated for each variable p :

{i'.-_O(p;i)}

The action reachability axioms are relatively straightfor-

ward as well. Let a be an action, and let Pl ;01 .... , Pa;dk, be

the action conditions, where each aj represents the interval

distance from the action time. Let 01 a 1..... eka e be the ac-

tion effects, represented with the corresponding relative in-
terval distances.

If a precondition is not reachable at some point within the

necessary interval, then the action is not reachable. For each

variable pj, with eliminated intervals:

(lal, bll ..... [ak, bkl )

we can eliminate from a :

{[aj-D, bj-d] :je {l k} t.....

where d i = [d, DI •

If an effect is not possible, then the achieving action is not
reachable. It turns out that we can enforce this in the same

way as conditions, as the impossible intervals have already

been eliminated from teachability and no other intervals are

eliminated from reachability unless no actions can achieve

those. For each effect e i and each interval [aj, bjl eliminat-
ed from ei, we can eliminate the interval

[ aj- D, bj- d]

from a, where 3i = ld, D].

Enforcing the persistence axiom is again more involved.

The basic rule states that an interval where p is not reachable

can be extended up to the point where an action can achieve

p or an exogenous event establishes p. To determine this

point, for a given interval, we define the set of subintervals

over which an action a can provide an effect p:

k_,)l [s+d, ool_lx, y], ee PersistEn(a;s) l
E(a,x,y) = [[s+d,t+D]r_lx, yl, e¢ PersistEff(a;s) j

where the union is over all effects e of a and each interval

Is, tl defining the domain of a for times _>x- D. Note that
the result is a finite set of intervals.

Let us assume an interval [x, y] has been eliminated from

p. Let z be the earliest time after y, where p is necessarily

true, z = = if there is no such time. Then we can eliminate

the interval that extends from y to the earliest time where an

action can achieve p. In other words, we can eliminate

from the domain of a, where a1.... , ak are all actions that

can achieve p.

Again, we need to extend this notion to allow the elimi-

nation of intervals that are not necessarily met by the given

unreachable interval, but are nonetheless unreachable, as the

reachable conditions in between do not persist. This is easy

to do in the interval reasoning framework; we can simply
eliminate each interval that is not in the union

E(al, y, z) _... _ E(ak, y, z)

as the persistent effects have already been taken into ac-

count. The elimination of the interval immediately following

[x, yl is a special case of this elimination rule.

To see how the application of elimination rules works, we

again look at the earlier example. It is given that the follow-

ing intervals have been eliminated:

-,p;[0l

p;[3l

-,r;[0]

e;[0]

Initially, the action condition reachability rules only allow us

to eliminate a;[3l.

Applying the persistence rule to p;[3l, we calculate

E(a, 3, _) and find that it is empty. This allows us to elimi-

nate p;[3, _1. Applying the persistence rule to other elimi-
nated intervals allows us to eliminate:

-_p;[0, 3 )

e;(0, 2)

Now that more intervals have been eliminated for p, the

application of the action condition reachability rules allows

a;[3, _l to be eliminated.

Finally, calculating E(a, 0,_) for -,r, we get (0, 5),

which allows us to eliminate _r;[5, _l • Note that the result is

the same as applying the logical axioms to determine when

actions and propositions may be reachable.

The above formulation does not include mutual exclusion

reasoning. For mutex reasoning, the variables will corre-

spond to pairs of propositions/actions, and the domains will

be sets of two dimensional intervals. Using these only re-

quires extending the elimination procedure for action reach-

ability to also eliminate actions where two preconditions are

mutually exclusive. Although we understand the basic out-

line of the elimination procedures for mutex reasoning, we

have not yet worked through all the details.
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Discussion

Exogenous events:

For purposes of this paper we assumed that exogenous

events or actions were not conditional in nature. As a result,

we lumped all of the exogenous effects together into a single
action with no conditions. It is not too difficult to extend our

theory to allow genera/exogenous events. Initially, we start

with the set x of all effects from unconditional exogenous

actions. In order for an exogenous event to take place, its

conditions must be satisfied. Thus, any exogenous event

whose conditions are satisfied in Xwill also take place, so its

effects must be added to x. We Continue in this way until we

obtain the closure of all exogenous conditions. The remain-

hag exogenous actions may or may not occur. However, if

their conditions ever become true, they will definitely occur.

As a result, we need to treat them like domain axioms. In

other words, if a,-t is a conditional exogenous evem, we need
to add the axioms:

Cond(a;t) ¢= a;t _ Eff(a;t)

The problem therefore reduces to one of handling domain

axioms, which the theory already handles.

Conclusions

In this paper, we extended reachability and mutual exclusion

reasoning to apply to a much richer notion of action and

time. In doing this, we provided a formalization of these no-

tions that is independent of any particular planning frame-

work. Surprisingly, the rules for mutual exclusion reasoning

turn out to be simpler and more elegant than we expected,

particularly given the complexity of the rules for Temporal

Graphplan developed by Smith and Weld [27].

There are still a number of issues involved in making this

reasoning practical for temporal planning systems. Restrict-

ing the intervals over which the mutex rules apply seems

critical, but there are tradeoffs in the veracity of the resulting

mutex reasoning. Efficient interval representation and rea-

soning is also crucial. Superficially, the problem of deter-

mining reachability looks like it could be cast as a constraint

satisfaction problem. However, as we've discussed above,

the constraints are complex elimination procedures, and it is

not yet clear whether this approach will be computationally
effective.

We are continuing to work towards a CSP implementa-

tion within the Europa planning system [13, 14] and hope to

apply these techniques to real problems invoh, ing spacecraft
and rovers.
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